Initial height: 400 m
Each time it hits the ground, it rebounds 75% the distance it has fallen. Let us say this distance is d, then the new height is:
![\begin{gathered} h=75\text{\% of }d=(75)/(100)\cdot d \\ \Rightarrow h=(3)/(4)d \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3670orkqdhy9kw3icellhgrs4i04f29l7d.png)
If the initial height is 400 m, then the subsequent heights are given by the recurrence equation:
![\begin{gathered} h_0=400 \\ h_n=((3)/(4))^n\cdot h_0 \\ \Rightarrow h_n=400\cdot((3)/(4))^n \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dly6rzv9fzb5usekck23n8st3vps8mm8d9.png)
And the total distance traveled D is:
![\begin{gathered} D=h_0+2\cdot\sum ^(\infty)_(n\mathop=1)\lbrack((3)/(4))^n\cdot h_0\rbrack \\ \Rightarrow D=400+800\cdot\sum ^(\infty)_{n\mathop{=}1}((3)/(4))^n \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bwl2qm7sfzkeed24bpizpbx0p4rqfrftku.png)
Now, let us analyze the sum term:
![\sum ^(\infty)_{n\mathop{=}1}((3)/(4))^n=(3)/(4)+((3)/(4)_{})^2+((3)/(4))^3+\cdots_{}](https://img.qammunity.org/2023/formulas/mathematics/college/wzwn7rho1tnpoqxufwwjc5hkkzn4uamijw.png)
From the infinite geometric sequence:
![\begin{gathered} \sum ^(\infty)_(n\mathop=0)r^n=(1)/(1-r) \\ \Rightarrow\sum ^(\infty)_{n\mathop{=}1}r^n=(1)/(1-r)-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xvxzind5ndeghpbx4jd7i1q4pc249b25ab.png)
Where r < 1. From our problem, r = 3/4 < 1, then:
![\begin{gathered} \sum ^(\infty)_{n\mathop{=}1}((3)/(4))^n=(1)/(1-(3)/(4))-1=(1)/((1)/(4))-1=4-1 \\ \Rightarrow\sum ^(\infty)_{n\mathop{=}1}((3)/(4))^n=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kbxm4539djh9x9puo1rjmd5liy6as3wjrk.png)
Finally, using this result:
![D=400+800\cdot3=400+2400=2800](https://img.qammunity.org/2023/formulas/mathematics/college/ql19t8vre7t1xjh7ljztn1s33c4bkmsh9t.png)