We are given the following:
Angle 1 is greater than 97 degrees and at most 115 degrees
The angle alternate to angle 1 is "(9x +7)"; alternate angles are congruent
Using the information above, we will develop the inequality shown below:

We will proceed to the second portion of the inequality. We have:

We will combine both inequalities into one. We have it thus:
[tex]\begin{gathered} x>10 \\ x\le12 \\ \text{Combining the inequalities, we have:} \\ 10We will proceed to plot this inequality on the number line as shown below: