Given data:
* The initial angular speed of the car is,
![\omega_i=0.54\text{ rad/s}](https://img.qammunity.org/2023/formulas/physics/college/l5n7cj82goeuezqtwnf0soalkjc1wv8av6.png)
* The final angular speed of the car is,
![\omega_f=0.96\text{ rad/s}](https://img.qammunity.org/2023/formulas/physics/college/rx9rehpxeqz6xie2osw5ee4qg5jyc2aj84.png)
* The angular displacement of the car is,
![\theta=1.4\text{ radians}](https://img.qammunity.org/2023/formulas/physics/college/pv1dsvekg2foz6fu3dytcoeojxslaxulfl.png)
Solution:
By the kinematics equation, the angular acceleration of the car in terms of the angular displacement is,
![\omega^2_{\text{f}}-\omega^2_i=2\alpha\theta](https://img.qammunity.org/2023/formulas/physics/college/90ff22ymw2z6el8kejnohd3w9inktg6ydh.png)
where,
![\alpha\text{ is the angular acceleration,}](https://img.qammunity.org/2023/formulas/physics/college/5qoa5rhj5wmac952a5mduxqngcflneh5cz.png)
Substituting the known values,
![\begin{gathered} 0.96^2-0.54^2=2*\alpha*1.4 \\ \alpha=(0.96^2-0.54^2)/(2*1.4) \\ \alpha=(0.9216-0.2916)/(2.8) \\ \alpha=(0.63)/(2.8) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ez07pdeu87l9ik9khc8yv57r93uso38lxc.png)
By simplifying,
![\alpha=0.225rads^(-2)](https://img.qammunity.org/2023/formulas/physics/college/7jm473ki5vx4eqgi2slbk1ywqd1wq3r2fc.png)
Thus, the angular acceleration of the car is 0.225 radians per second squared.