To find:
The derivative of function f(x) using the first principle.
![f(x)=√(x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/873fcmlq7rb1chu99quxya8598mspyza85.png)
Solution:
By the first principle, the derivative of the function f(x) is given by:
![f^(\prime)(x)=\lim_(h\to0)(f(x+h)-f(x))/(h)](https://img.qammunity.org/2023/formulas/mathematics/high-school/eznd74fyhyvnmgkm4uxvsefuh4gucipusw.png)
So, the derivative of the given function can be obtained as follows:
![\begin{gathered} f^(\prime)(x)=\lim_(h\to0)(√(x+h)-√(x))/(h) \\ =\lim_(h\to0)(√(x+h)-√(x))/(h)*(√(x+h)+√(x))/(√(x+h)+√(x)) \\ =\lim_(h\to0)(x+h-x)/(h(√(x+h)+√(x))) \\ =\lim_(h\to0)(h)/(h(√(x+h)+√(x))) \\ =\lim_(h\to0)(1)/((√(x+h)+√(x))) \\ =(1)/(√(x+0)+√(x)) \\ =(1)/(2√(x)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/aj3iz8urww0xcrpxmkvmmnad3q3vzhj29a.png)
Thus, the derivative of the given function is:
![f^(\prime)(x)=(1)/(2√(x))](https://img.qammunity.org/2023/formulas/mathematics/college/ynictiz5b0gh2qwwxzkhx6cpb8nh2z1z4m.png)