Answer:
a) The free body diagram is drawn in the explanation section
b) The intensity of the force applied horizontally which makes the bicycle move forward at a constant speed = 49.05 N
c) The intensity of the force applied horizontally which makes the bicycle move forward with an acceleration of 100 m/s² = 1049.05N
Step-by-step explanation:
The mass of the bicycle, m = 10.0 kg
Angle of inclination, θ = 30°
The free body diagram of the illustration is drawn below
The bicyce is pushed up an incline of 30°
The weight of the bicycle acts downward (because the weight of every object acts downward)
Since the bicycle is pushed up an inclined of 30°, the force has to be resolved to the vertical(mgcosθ) and horizontal(mgsinθ)
b) The net force on the bicycle is:

If the bicycle moves at constant speed, the acceleration is 0 m/s²
a = 0m/s²

c) The intensity of the force applied horizontally which moves the bicycle forward with an acceleration of 100 m/s²
