First, let's find the area circular sector:
![A=(r^2\theta)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/twft72axfjw10z17m5qntwicltng0ohrwu.png)
Where:
r = radius = 7cm
θ = angle (in radians) = 5/6 π
so:
![\begin{gathered} A=(7^2((5)/(6)\pi))/(2) \\ A=(245)/(12)\pi \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9jd9pn4e9bz6heo26xm4hwjqrjj38b1rdl.png)
Now, let's find the area of the triangle, that triangle is an isosceles triangle, so, we can use the following formula in order to find its area:
![\begin{gathered} At=(1)/(2)s^2\cdot\sin (\theta) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/myn17am6b8of7ccrcn3ovsx4bbmjvkxx4b.png)
where:
s = one of the equal sides = 7
θ = angle = 150
so:
![\begin{gathered} At=(1)/(2)(7^2)\sin (150) \\ At=(49)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tzsrzt3vhhux4by01mpg6pu1whwtrcoych.png)
Therefore, the area of the white region will be, the area of the circular sector minus the area of the isosceles triangle, so:
![Area_{\text{ }}of_{\text{ }}the_{\text{ }}white_{\text{ }}region=(245)/(12)\pi-(49)/(4)=51.9cm^2](https://img.qammunity.org/2023/formulas/mathematics/college/41githhpa79y6vr1h4atbjlior59ficpb4.png)