We will have the following:
AB and CD related in terms of x and y will be:
![\begin{gathered} AB=CD\Rightarrow x+y=2x-y-2 \\ \\ \Rightarrow2y=x-2\Rightarrow y=(x)/(2)-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f2r2z9vvatcugxbxcgf02tqae3t84kq10d.png)
So, the equation that relates AB and CD is:
![y=(x)/(2)-1](https://img.qammunity.org/2023/formulas/mathematics/college/6l7x68de1izgd3lmnlgq6walp5h2j8yfqk.png)
BC and DA in terms of x and y is:
![\begin{gathered} BC=DA\Rightarrow x+2y=3x-3y+2 \\ \\ \Rightarrow5y=2x+2\Rightarrow y=(2)/(5)x+(2)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oojttie1n1f71ymk0q6hylizs1b83k20qy.png)
So, the equation that relates BC and DA is:
![y=(2)/(5)x+(2)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/2drcmceus3rgfvktoyvqlzm4xvsz67ts1j.png)
Now; we determine the values of x & y as follows:
![\begin{gathered} (x)/(2)-1=(2)/(5)x+(2)/(5)\Rightarrow(1)/(10)x=(7)/(5) \\ \\ \Rightarrow x=14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fksa3eg6k5letnt0l402f2zlvuh6txtz99.png)
Then:
![y=((14))/(2)-1\Rightarrow y=6](https://img.qammunity.org/2023/formulas/mathematics/college/wea960op1cshvbp6rtkps0n528yq7gip1z.png)
So, the values are:
![\begin{gathered} x=14 \\ \\ y=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i39uzy76lae6xtbs67d01r6pq8ynsvz63p.png)