The ages of the students of groups A and B are displayed in the histograms.
For group A
We can determine the number of students per age by looking at the bars of the histogram
2 are 15 years old
5 are 16 years old
6 are 17 years old
5 are 18 years old
2 are 19 years old
The total students for group A is
To calculate the average age on group a you have to use the following formula
Σxifi indicates the sum of each value of age multiplied by its observed frequency
n is the total number of students of the group
For group A the average value is
The average year of group A is 17 years old.
To determine the Median of the group, you have to calculate its position first.
The Median is in the tenth position. To determine the age it corresponds you have to look at the accumulated observed frequencies:
F(15)=2
F(16)=2+5=7
F(17)=7+6=13→ The 10nth observation corresponds to a 17 year old student
F(18)=13+5=18
F(19)=18+2=20
The median of group A is 17 years old.
For group B
As before we can determine the number of students per age by looking at the bars of the histogram
2 are 15 years old
3 are 16 years old
4 are 17 years old
5 are 18 years old
6 are 19 years old
The total number of students for group B is
The average age of group B can be calculated as
The average age for group B is 17.5 years old
Same as before, to determine the median you have to calculate its position in the sample and then locate it:
The median is in the 10nth position, to determine where the 10nth student is located you have to take a look at the accumulated frequencies:
F(15)=2
F(16)=2+3=5
F(17)=5+4=9
F(18)=9+5=14 →The 10nth observation corresponds to a 18 year old student
F(19)=14+6=20
The median of group B is 18 years old
So
The mean and median of group B are greater than the mean and median from group B. The correct choice is the first one.