61.8k views
3 votes
Not ConnectedThunde...lt BridgeNot Connected2 (07.01 HC)answer the following question. Find the value of sin x and cosy. What relationship do the ratios of sin x® and cos yº share?

Not ConnectedThunde...lt BridgeNot Connected2 (07.01 HC)answer the following question-example-1
User GrumpyTofu
by
5.8k points

1 Answer

4 votes

The given triangle is a right-angled triangle.

Consider PO is Hypotenuse.

By using the Pythagoras formula, we get


PO^2=8^2+6^2


PO^2=64+36
PO^2=100=10^2
PO=10

Consider the angle x:

Recall the sine formula


\sin \theta=\frac{Opposite\text{ side}}{\text{Hypotenuse}}

Substitute Opposite side =6 and Hypotenuse=10, we get


\sin x^o=(6)/(10)


\sin x^o=(3)/(5)
\text{Use sin }36.869=(3)/(5)


\sin x^o=\sin 36.869
x^o=37

Consider the angle y:

Recall the sine formula


\sin \theta=\frac{Opposite\text{ side}}{\text{Hypotenuse}}

Substitute Opposite side =8 and Hypotenuse=10, we get


\sin y^o=(8)/(10)


\sin y^o=(4)/(5)


\text{Use }\sin 53.13^{}=(4)/(5)


\sin y^o=\sin \text{ 53.13}
y^o=53^{}

Hence the required values are


x^o=37^o
y^o=53^o

User Fzum
by
5.5k points