We need to find how much will be left after 6 half-lives of a radioactive isotope starting with 130g.
One way to write the amount N of radioactive isotope left after a time t, with an initial amount N₀ and a half-life τ is:
![N=N_0\left((1)/(2)\right)^{t\text{ /}\tau}](https://img.qammunity.org/2023/formulas/mathematics/college/ti57tc3nk6k1ko8z2vbqk5a8ndchyc7sjz.png)
Notice that when t = τ, we have:
![N=(N_0)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/bzbya5nrw0s4w5g7g9y6mwk01gqmeg5nnu.png)
In this problem, we have:
![\begin{gathered} N_0=130g \\ \\ t=6\tau \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/suok5ozjzxxhaj7qlsi53m7p05pn8q0pvi.png)
Then, we obtain:
![N=130g\left((1)/(2)\right)^{6\tau\text{ /}\tau}=130g\left((1)/(2)\right)^6=(130g)/(64)\cong2\text{ g}](https://img.qammunity.org/2023/formulas/mathematics/college/d10iua7ikkwvs261llxgr8bdmca03pww4g.png)
Therefore, rounding to the nearest gram, the answer is 2 grams.