Given
The equation of the height is
![h(t)=-16t^2+20t+950](https://img.qammunity.org/2023/formulas/physics/college/vxyb57b4x0iopyu8g94381o04lxsnv2et4.png)
To find
The velocity when the stone reach the ground
Step-by-step explanation
When the stone reaches the ground
![\begin{gathered} h(t)=0 \\ \Rightarrow-16t^2+20t+950=0 \\ \Rightarrow16t^2-20t-950=0 \\ \Rightarrow t=(20\pm√(20^2-(4*16*(-950)))/(2*16) \\ \Rightarrow t=(20\pm247.38)/(2*16)=8.35\text{ s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/szb0xaj2g8ow3mjtp4i35u806uy9yaikie.png)
Thus the time taken to reach the ground is 8.35s . (Here only the positive value is considered)
We know the velocity is the change in distance per unit time,
Thus,
![\begin{gathered} v(t)=h^(\prime)(t) \\ \Rightarrow v(t)=-32t+20 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/w5ug2e9h2tvxgh4kaq96m8zf50uzbyhq08.png)
At t=8.35 s
![\begin{gathered} v(8.35)=-32*8.35+20 \\ \Rightarrow v(8.35)=-247.2\text{ feet/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/s6f0t9q8xcrsm3xtiic52ewhx9hdiia8kw.png)
Conclusion
The velocity is -247.20 feet/s