Given the circle G
As shown, m∠FGH = 36
And the radius of the circle = r = FG = 10 units
we will find the length of the arc FH using the formula:
![\text{Arc}=\theta\cdot r](https://img.qammunity.org/2023/formulas/mathematics/college/6rbyn1duiirymi1hhd43014ndbmqbhlm9l.png)
The given angle measured in degree, we will convert it to radian
So,
![\theta=36\cdot(\pi)/(180)=(\pi)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/pe5ceid3b9vdyt4wd0ugfts118ci3b0rmu.png)
So, the length of the arc =
![(\pi)/(5)\cdot10=2\pi\approx6.283185](https://img.qammunity.org/2023/formulas/mathematics/college/idr3jqkxwq9rqe2owf4eh3asz0ojgr33ne.png)
Round to the nearest hundredth.
So, the answer will be the length of the arc FH = 6.28