Answer:
3x+5y=12.
Step-by-step explanation:
Given the line: 5x-3y=2
First, we determine the slope by making y the subject of the equation.
![\begin{gathered} 3y=5x-2 \\ y=(5)/(3)x-(2)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gi3vqnpvzm7p1wkxgkzpq8789wq021ej05.png)
Comparing with the slope-intercept form: y=mx+b
• Slope = 5/3
Let the slope of the perpendicular line = n
By definition. two lines are perpendicular if the product of their slopes is -1.
Therefore:
![\begin{gathered} (5)/(3)* n=-1 \\ n=-(3)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3f9dlisia05rxwgnfffkoola7qk4bn6ymr.png)
Next, we use the point-slope form to find the perpendicular to the given line that is passing through (-1, 3).
![\begin{gathered} y-y_1=m(x-x_1) \\ y-3=-(3)/(5)(x-(-1)) \\ y-3=-(3)/(5)(x+1)\text{ Multiply both sides by 5} \\ 5(y-3)=-3(x+1) \\ 5y-15=-3x-3 \\ 5y+3x=-3+15 \\ 3x+5y=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r6clh3thm81wwl13m2v249ypd21600sgw2.png)
The required equation is 3x+5y=12.