The given functions are
![\begin{gathered} f(x)=x^2+5 \\ g(x)=\sqrt[]{x-4} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hgdmgxh5oylcxqn3d2pgq0vccgpg06rirg.png)
We need to find the composite function f(g(x))
Which means, replace x in f(x) by g(x)
![f(g(x))=(\sqrt[]{x-4})^2+5](https://img.qammunity.org/2023/formulas/mathematics/college/e14z342g2w3ed4kjom8m53b9fkbxyw169n.png)
Power 2 will cancel the square root
![\begin{gathered} f(g(x))=x-4+5 \\ f(g(x))=x+1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k5bwizylv6gqn8qtutqmz2mqvc4hliorub.png)
Let us find the domain of f(g(x))
Since there is no square root for a negative number, then
![x-4\ge0](https://img.qammunity.org/2023/formulas/mathematics/high-school/8y4pf6bce0v7c3xi6zd49axrvoh6mr30tz.png)
Add 4 to both sides, then
![\begin{gathered} x-4+4\ge0+4 \\ x\ge4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ds3xqckgym14wpn3uy5w0f0qag2fd23nua.png)
Then the domain of f(g(x)) should be
![\lbrack4,\infty)](https://img.qammunity.org/2023/formulas/mathematics/high-school/1mb0jcgf2thou04bh8r8v8niwybyis7hda.png)