Answer:
The fourth option:
J(7, - 15)
K ( -21, 62)
W(14, 32)
Step-by-step explanation:
The counterclockwise rotation by 180 degrees about the origin corresponds to the following transformation of coordinates.
![(x,y)\to(-x,-y)](https://img.qammunity.org/2023/formulas/mathematics/college/qpt27fcz69mrx85g0rjrceun0l5w8ct88g.png)
This means that if we have the point J (-7, 15), then under 180 counterclockwise rotation about the origin, it transforms to
![\begin{gathered} J(-7,15)\to J(--7,1-5) \\ \to J(7,-15) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t5jhdjwv4ya5a5s4lwcdykxlamq3m8qrfb.png)
Similarly, the point K(21, -62) transforms to
![K\mleft(21,-62\mright)\to K(-21,62)](https://img.qammunity.org/2023/formulas/mathematics/college/mvr68a3de0h7rqw5f0glxes5cxiq9krf5t.png)
and
![W(-14,-32)\to W(14,32)](https://img.qammunity.org/2023/formulas/mathematics/college/k022mm43elnw6qfgtn6svrb5bsp890dejh.png)
Hence, to summerise, a 180-degree counterclockwise rotation about the origin brings about the following changes
![\begin{gathered} J\mleft(7,-15\mright) \\ K(-21,62) \\ W\mleft(14,32\mright) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iekl3u7o8dg27wa4xcrngoeaxg556z3hqp.png)