Given the following Quadratic equation:
![y=-x^2+10x-16](https://img.qammunity.org/2023/formulas/mathematics/college/ondditqs487kdaut4u8rds488rg0y85nph.png)
1. You can find the vertex as following:
-Find the x-coordinate of the vertex with this expression:
![(-b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/high-school/4gdz4j1q2c53kr8xyvj6juq0u03xhjki17.png)
In this case:
![\begin{gathered} a=-1 \\ b=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/auzwdewwthxjdz0iw0hfwylykhw2ox5lu0.png)
Then, substituting values, you get:
![(-10)/(2(-1))=5](https://img.qammunity.org/2023/formulas/mathematics/college/mgwkoetctl8z8j0e0mr7vrlh7tl4okyv7j.png)
- Substitute this value into the Quadratic equation and evaluate, in order to find the y-coordinate of the vertex. This is:
![\begin{gathered} y=-(5)^2+10(5)-16 \\ y=-25+50-16 \\ y=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mtn9307v95nlf6l2femrho8pcomisnm7sa.png)
Then, the vertex is:
![(5,9)](https://img.qammunity.org/2023/formulas/mathematics/college/s8lh4qv842gwlc9zik6yf6unvn2hw64oy8.png)
2. Now let's find the roots:
- Substitute the following value of "y" into the equation:
![y=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/5vm2i52uqdka0dixzzefmp92421iv5xkk7.png)
Then:
![0=-x^2+10x-16](https://img.qammunity.org/2023/formulas/mathematics/college/yo2l24mnggtg8em09zmi6ckt2rhuzcs118.png)
- In order to make the leading coefficient positive, multiply both sides of the equation by -1:
![\begin{gathered} (-1)(0)=(-x^2+10x-16)(-1) \\ 0=x^2-10x+16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6k0zfa1vnrfmehkyhjows17cbkd220bdhz.png)
- Factor the equation. Find two numbers whose sum is -10 and whose product is 16. These would be -8 and -2. Then:
![(x-8)(x-2)=0](https://img.qammunity.org/2023/formulas/mathematics/college/3qa64sma68tf85b2utjon4uc2kda3r34jh.png)
- The roots are:
![\begin{gathered} x_1=8 \\ x_2=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/15dh99tok19rwhf048wrza20ocsus5t1xm.png)
3. Now let's find five points to plot them in the coordinate plane. Give five different values to "x" and evaluate in order to find the corresponding value of "y". Then:
- When
![x=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/xsb7940fuqxllob7pwpm2jsl9ruu78r3uv.png)
You get:
![y=-(1)^2+10(1)-16=-7](https://img.qammunity.org/2023/formulas/mathematics/college/h1bxecq8yf72kbhvovlarw4tun025sf1ew.png)
The point is:
![(1,-7)](https://img.qammunity.org/2023/formulas/mathematics/college/dntbbbp2r0ml2yagj0e9phqmimm01xhfv2.png)
- When
![x=3](https://img.qammunity.org/2023/formulas/mathematics/high-school/tu78xmfzid4zbk5fl1tm8vw66ibi0yce1h.png)
You get:
![y=-(3)^2+10(3)-16=5](https://img.qammunity.org/2023/formulas/mathematics/college/ctmleba59qngymfpaqubry9ounk7ov0x07.png)
The point is:
![(3,5)](https://img.qammunity.org/2023/formulas/mathematics/college/apr8i54ba2qbnmxg07of4rdi9usequg6vs.png)
- When:
![x=4](https://img.qammunity.org/2023/formulas/mathematics/college/clnezaiwnjqx862gnqh94au9b279p8untt.png)
You get:
![y=-(4)^2+10(4)-16=8](https://img.qammunity.org/2023/formulas/mathematics/college/hvyno8v2xgjjkaxgcmwrececywi2ayjacf.png)
The point is:
![(4,8)](https://img.qammunity.org/2023/formulas/mathematics/college/khwfrz5nb14eccjbvdicg0gso3wd57pdmo.png)
- When:
![x=6](https://img.qammunity.org/2023/formulas/mathematics/college/i3rxl8c1ci3e808oua3cmlxzk41vuam7rn.png)
![y=-(6)^2+10(6)-16=8](https://img.qammunity.org/2023/formulas/mathematics/college/1j69dkjr2oba4b9b4i9m3r0ki5thk1fcxa.png)
The point is:
![(6,8)](https://img.qammunity.org/2023/formulas/mathematics/college/s3lnblltgl1uixn6mx5hkmkfkfrwjpkj62.png)
- When:
![x=7](https://img.qammunity.org/2023/formulas/mathematics/college/zq1e40da7ft5m7vp2pp4z6wy99lb3uqekj.png)
You get:
![y=-(7)^2+10(7)-16=5](https://img.qammunity.org/2023/formulas/mathematics/college/b4uop644sk80rrog70kousyttcwfepige4.png)
The point is:
![(7,5)](https://img.qammunity.org/2023/formulas/mathematics/college/ldko1jlkjmcjgp614bvinnskhie80x4rr3.png)
Finally, you get the following graph of the equation: