Solution:
Given the function:
![f(x)=3x+12](https://img.qammunity.org/2023/formulas/mathematics/college/w2goxh3o92ikb4kk96l9uhptqhxfckpld3.png)
To find the inverse,
step 1: Let y represent f(x).
Thus,
![\begin{gathered} f(x_)=3x+12 \\ where\text{ y=f\lparen x\rparen} \\ \Rightarrow y=3x+12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/inczeo868dik2t7smj7jhc32lfi0xkanae.png)
step 2: Swap the position of y for x.
Thus,
![x=3y+12](https://img.qammunity.org/2023/formulas/mathematics/college/40q85nfu7uwqmvl3doowd290eq6havwr9m.png)
step 3: Make y the subject of the equation in step 2.
Thus,
![\begin{gathered} x=3y+12 \\ subtract\text{ 12 from both sides of the equation,} \\ x-12=3y+12-12 \\ \Rightarrow x-12=3y \\ divide\text{ both sides by the coefficient of y, which is 3} \\ (x-12)/(3)=(3y)/(3) \\ (x)/(3)-(12)/(3)=y \\ \Rightarrow y=(1)/(3)x-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ocx3fk3xajhz7o80uyk2jsu670ld3vl2m7.png)
Thus, the inverse of the function is
![f^(-1)(x)=(1)/(3)x-4](https://img.qammunity.org/2023/formulas/mathematics/college/am37kxt1vz1hzydtcnkwi8ojug4i4pku2y.png)
The graphs of the function and its inverse are as shown below: