Answer:
a = 161.11 m/s²
Fnet = 2.74 N
Step-by-step explanation:
We know the distance traveled L = 1.16m and the time t = 0.12s, additionally, the initial velocity is vi = 0 m/s, so we can use the following equation to find the acceleration:
![\begin{gathered} x_f=x_i+v_it+(1)/(2)at^2 \\ x_f-x_i=v_it+(1)/(2)at^2 \\ L=v_it+(1)/(2)at^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/gex0ppun9i533gx802dejpsw8vxaeyy8el.png)
Replacing the values and solving for a, we get:
![\begin{gathered} 1.16=0(0.12)+(1)/(2)a(0.12)^2_{} \\ 1.16=0+(1)/(2)(0.144)a \\ 1.16=0.0072a \\ (1.16)/(0.0072)=a \\ 161.11m/s^2=a \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/cqnhayqp6w9hxaodqeiv5oxnkq0oxa1fpq.png)
Then, the net force is equal to the mass times acceleration, so:
![\begin{gathered} F_{\text{net}}=ma \\ F_{\text{net}}=0.017\operatorname{kg}(161.11m/s^2) \\ F_{\text{net}}=2.74\text{ N} \end{gathered}]()
So, the answers are:
a = 161.11 m/s²
Fnet = 2.74 N