Given:
There are given that the coordinates of the rectangle are:
![\begin{gathered} A:(1,7) \\ B:(8,7) \\ C:(8,-3) \\ D:(1,-3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jb5en9idpac1xjrbikfz6jcgvrn4x1qvkr.png)
Step-by-step explanation:
To find the value of the perimeter of the rectangle, first, we need to find the distance between all sides by using the distance formula:
So,
First find the distance for side AB:
![\begin{gathered} AB=√((x_2-x_1)^2+(y_2-y_1)^2) \\ AB=√((8-1)^2+(7-7)^2) \\ AB=√((7)^2+0) \\ AB=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/23s9t6rf220oxedyd944907sh9r8g8q3y6.png)
Then,
For side BC:
![\begin{gathered} BC=√((x_2-x_1)^2+(y_2-y_1)^2) \\ BC=√((8-8)^2+(-3-7)^2) \\ BC=√(100) \\ BC=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8vqh8njud63ous055btpf51bj2snfkcfnt.png)
Then,
For the side CD:
![\begin{gathered} CD=√((x_2-x_1)^2+(y_2-y_1)^2) \\ CD=√((1-8)^2+(-3+3)^2) \\ CD=√((-7)^2+0) \\ CD=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8n1ent64nyxfkouqh41xuoycdsq30i5xnh.png)
And,
For the side DA:
![\begin{gathered} DA=√((x_2-x_1)^2+(y_2-y_1)^2) \\ DA=√((1-1)^2+(-3-7)^2) \\ DA=√((100)) \\ DA=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f30sje28coepe4yaicm3nlqghxcx0dkhu4.png)
Then,
From the formula of perimeter of rectangle;
![P=AB+BC+CD+DA](https://img.qammunity.org/2023/formulas/mathematics/college/axcpcjgwfy0g8xnk4n836k62s71jxuuuut.png)
Then,
![\begin{gathered} \begin{equation*} P=AB+BC+CD+DA \end{equation*} \\ P=7+10+7+10 \\ P=14+20 \\ P=34units \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ffj8d1w2f5o9es6w6vr7xrdhu53bau1his.png)
Final answer:
Hence, the correct option is D.