For the letters A, B and C, let's use the following triangle:
Using the Pythagoras theorem, let's find the value of y:
![\begin{gathered} 4^2=x^2+y^2 \\ y^2=16-x^2 \\ y=\sqrt[]{16-x^2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ytdj4ofludcvwsycqteavaojhq2naa83ns.png)
Now, let's find the equivalent for letter A:
![\begin{gathered} \tan (\sin ^(-1)((x)/(4))) \\ =\tan (k) \\ =(x)/(y) \\ =\frac{x}{\sqrt[]{16-x^2}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/31dl3s4nvlnh712jw5ctp8vw9ercvzcp8g.png)
So letter A is equivalent to number 1.
For letter B we have:
![\begin{gathered} \cos (\sin ^(-1)((x)/(4))) \\ =\cos (k) \\ =(y)/(4) \\ =\frac{\sqrt[]{16-x^2}}{4} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5kqnffzltoanp8a6a20r9e9aqmcb0a49w9.png)
So letter B is equivalent to number 2.
For letter C we have:
![\begin{gathered} (1)/(2)\sin (2\sin ^(-1)((x)/(4))) \\ =(1)/(2)\sin (2k) \\ =(1)/(2)\cdot(2\sin (k)\cos (k) \\ =\sin (k)\cdot\cos (k)_{} \\ =(x)/(4)\cdot(y)/(4) \\ =(x)/(16)\cdot\sqrt[]{16-x^2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8p2ecutltjpped15gpbowl3lazo2kf5riv.png)
So letter C is equivalent to number 5.
Now, for letters D and E, let's use this triangle:
Finding y, we have that:
![\begin{gathered} y^2=x^2+4^2 \\ y=\sqrt[]{16+x^2^{}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pdkhle1v8nlbmmotgi6r4n2u56yl6ovdue.png)
So for letter D we have:
![\begin{gathered} \sin (\tan ^(-1)((x)/(4))) \\ =\sin (k) \\ =(x)/(y) \\ =\frac{x}{\sqrt[]{16+x^2}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cob8wlhco66mk8nrw8h7si5j5x82toksco.png)
So letter D is equivalent to number 3.
For letter E we have:
![\begin{gathered} \cos (\tan ^(-1)((x)/(4))) \\ =\cos (k) \\ =(4)/(y) \\ =\frac{4}{\sqrt[]{16+x^2}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n5aiyr2kjm3clj3hcffihsg6fc7qkz9so7.png)
So letter E is equivalent to number 4.