Solution:
Given the sequence:
![25,\text{ 31, 37, 43, . . .}](https://img.qammunity.org/2023/formulas/mathematics/college/yd9hyjcnjd7t19tgiip505xta95n9a36tz.png)
Provided that the sequence is arithmetic, to evaluate the common difference, we subtract a preceding term from its succeeding term.
This implies that
![\begin{gathered} d=a_2-a_1\text{ or a}_3-a_2 \\ where \\ d\Rightarrow common\text{ difference} \\ a_2\Rightarrow second\text{ term} \\ a_1\Rightarrow first\text{ term} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jjchzb0qwogwcn3rmcrm6y3c96wsylcoqv.png)
In this case,
![\begin{gathered} a_1=25 \\ a_2=31 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o6xu1lths7owgqu7wyxezcnc7axoik8x6n.png)
Thus, we have
![\begin{gathered} d=a_2-a_1 \\ =31-26 \\ \Rightarrow d=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/waze3fll1dm2mc5s8bwy5fqg6flfk7xknh.png)
The common difference is thus 6
The correct option is