Given:
The function is,
![g(x)=(2x)/(x+5)](https://img.qammunity.org/2023/formulas/mathematics/college/gif109gl3tsmuftx613tyd2bfk4wg7zvnw.png)
Horizontal asymtotes: it helps to describe the behavior of a graph as the input of function gets very large or very small.
The horizontal asymtotes for the given function is,
![\begin{gathered} \lim _(x\to\infty)g(x)=\lim _(x\to\infty)((2x)/(x+5)) \\ =\lim _(x\to\infty)((2x)/(x(1+(5)/(x)))) \\ =\lim _(x\to\infty)(2)/(1+(5)/(x)) \\ =2 \\ \text{Similarly when x}\rightarrow-\infty,g(x)=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5j5w1tov5xcnfwgk8trjmbs5p2mp00xj9f.png)
So, the equation for the horizontal asymtotes is y = 2.
Answer: Option A) y = 2.