Consider the system of equations as,
![\begin{gathered} (1)/(12)x-(1)/(12)y=13 \\ (1)/(3)x-(1)/(6)y=20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/31sjdjmmacmkppans45raucxszp3je3f63.png)
Multiply the equation 1 by 12 and the equation 2 by 6,
![\begin{gathered} x-y=156 \\ 2x-y=120 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cs036jafpbl172ccvukh8t3vrtel5l7fs0.png)
Solve the system of equations using Elimination Method.
Subtract both the equations,
![\begin{gathered} (x-y)-(2x-y)=156-120 \\ x-y-2x+y=36 \\ -x=36 \\ x=-36 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tllef3gvq9fq1p8wpqoosx4wip6rrzt92s.png)
Substitute this value in equation 1,
![\begin{gathered} -36-y=156 \\ -y=156+36 \\ -y=192 \\ y=-192 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mph6cgq8fvob9ipwslr1ekeyocimhzm66m.png)
Thus, the solution of the given system of equations is (x,y) = (- 36, - 192).
Therefore, option (b) is the correct choice.