The Solution to problem 1:
Given the quadratic equation below:

We are required to solve using the Formula method.
Step 1:
The quadratic formula is given as below:
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
in this case,

Step 2:
Substituting these values in the formula above, we get
![x=\frac{-(7)\pm\sqrt[]{7^2-4(5)(2)}}{2(5)}](https://img.qammunity.org/2023/formulas/mathematics/college/qu8k8cmk5acb6kwu8ycd0npnf178b2c5jq.png)
![x=\frac{-7\pm\sqrt[]{49^{}-40}}{10}=\frac{-7\pm\text{ }\sqrt[]{9}}{10}=(-7\pm3)/(10)](https://img.qammunity.org/2023/formulas/mathematics/college/8re4u2utnmktt72k060tc2no24bu6sx65j.png)

Therefore, the solution problem 1 is:
