Answer:
x = -1
Explanation:
Given equation:
![\log_5(24-x)+\log_5(-x)=2](https://img.qammunity.org/2023/formulas/mathematics/high-school/e5h7tc0xyynv6u37u6l97l0vfhv0sbf3tv.png)
![\textsf{Apply the log Product law}: \quad \log_ax + \log_ay=\log_axy](https://img.qammunity.org/2023/formulas/mathematics/high-school/e6rv8v6ejdkal0zx8w4ea10cofz1jve6bp.png)
![\implies \log_5[-x(24-x)]=2](https://img.qammunity.org/2023/formulas/mathematics/high-school/5r2hqxzxpdjob3c34ibkz71jkceyq9bnyg.png)
![\implies \log_5(x^2-24x)=2](https://img.qammunity.org/2023/formulas/mathematics/high-school/nkjva7ygmj9rv8c6bsv2lqt8mnhphk3fmf.png)
![\textsf{Apply the log law}: \quad \log_ab=c \iff a^c=b](https://img.qammunity.org/2023/formulas/mathematics/high-school/vwiazngcy6iuf113wxpk40za4mrbuifjap.png)
![\implies 5^2=x^2-24x](https://img.qammunity.org/2023/formulas/mathematics/high-school/q23ba3kh41flqzd2vxbmig6f6ii8j6n7pc.png)
Simplify:
![\implies x^2-24x-25=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/c3c15v7fpkm5il0ft9ebsvijps59m04vmp.png)
Factor the quadratic equation:
![\implies x^2+x-25x-25=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/kxhgga9cg0wxg1jl3d87plr0gedihnxup1.png)
![\implies x(x+1)-25(x+1)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/degw0uq9rhf3fu43gxk2pvmk6htymoqho9.png)
![\implies (x-25)(x+1)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/qay7nfukmasrbvo4u5a1f3srjcg3uh9vua.png)
Apply the zero product property:
![\implies x-25=0 \implies x=25](https://img.qammunity.org/2023/formulas/mathematics/high-school/9i5sje1l9sr8129q77dvopjoeica4m6hz8.png)
![\implies x+1=0 \implies x=-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/ct8xmgkxnoovwufd2f09k9gks8ezzzingl.png)
As logs of negative numbers cannot be taken, x = -1 is the only valid solution.
Check by substituting x = -1 into the original equation:
![\implies \log_5(24-(-1))+\log_5(-(-1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/3k6oe2egdr3ahg8iro0qes691pxm1seclr.png)
![\implies \log_5(25)+\log_5(1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/znzcmd68oxbcnqnz1h6t7vel4k237iyg96.png)
![\implies \log_5(5^2)+0](https://img.qammunity.org/2023/formulas/mathematics/high-school/dw6unttl9r018h66eb5dtsqoyhk2g0yita.png)
![\implies 2\log_5(5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/2ghxz31z5uq2tuuyfzmi5eo5pxvrv8wsjp.png)
![\implies 2(1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/a9ju0cw83em2f4l30gewy5eone14ic28tt.png)
![\implies 2](https://img.qammunity.org/2023/formulas/mathematics/high-school/b0slf01oo7yy9wpwqkq2sfdyjyi54qx1nx.png)
Hence, the solution is:
![\boxed{ x = -1}](https://img.qammunity.org/2023/formulas/mathematics/high-school/oqq5nxexqh3wbi2qgtcdvaoylgwbgbk987.png)