60.3k views
4 votes
Write a matrix equation for the system below. Then solve the equation by using an inverse matrix. You must solve this by hand. Give exact answers. No graphing calculator!

Write a matrix equation for the system below. Then solve the equation by using an-example-1
User Dincerm
by
8.7k points

1 Answer

7 votes

First, let's write the system in the matrix form AX = B:


\begin{bmatrix}{1} & {2} \\ {-4} & {3}\end{bmatrix}\begin{bmatrix}{x} & \\ {y} & \end{bmatrix}=\begin{bmatrix}{2} & {} \\ {25} & {}\end{bmatrix}

Now, to solve the system, let's first find the inverse of the matrix A, using the formula below for the inverse of a 2x2 matrix:


\begin{gathered} A=\begin{bmatrix}{a} & {b} \\ c & {d}\end{bmatrix}\\ \\ A^(-1)=(1)/(ad-bc)\begin{bmatrix}{d} & -b \\ {-c} & {a}\end{bmatrix} \end{gathered}

So we have:


\begin{gathered} A=\begin{bmatrix}{1} & {2} \\ {-4} & {3}\end{bmatrix}\\ \\ A^(-1)=(1)/(3-(-8))\begin{bmatrix}{3} & -2{} \\ {4} & {1}\end{bmatrix}\\ \\ A^(-1)=(1)/(11)\begin{bmatrix}{3} & -2{} \\ {4} & {1}\end{bmatrix}\\ \\ A^(-1)=\begin{bmatrix}{(3)/(11)} & -(2)/(11){} \\ {(4)/(11)} & {(1)/(11)}\end{bmatrix}\\ \end{gathered}

Now, to solve the system, we can do the following:


\begin{gathered} AX=B\\ \\ A^(-1)AX=A^(-1)B\\ \\ IX=A^(-1)B\\ \\ X=A^(-1)B \end{gathered}

Multiplying the inverse matrix and matrix B, we have:


\begin{gathered} \begin{bmatrix}{(3)/(11)} & {-(2)/(11)} \\ {(4)/(11)} & {(1)/(11)}\end{bmatrix}\cdot\begin{bmatrix}{2} & {} \\ 25 & {}\end{bmatrix}=\begin{bmatrix}{(3)/(11)}\cdot2+(-(2)/(11))\cdot25 & \\ {(4)/(11)}\cdot2+(1)/(11)\cdot25 & {}\end{bmatrix}\\ \\ =\begin{bmatrix}{(6)/(11)}-(50)/(11) & \\ {(8)/(11)}+(25)/(11) & {}\end{bmatrix}=\begin{bmatrix}-(44)/(11) & \\ (33)/(11) & {}\end{bmatrix}=\begin{bmatrix}-4 & \\ 3 & {}\end{bmatrix} \end{gathered}

Therefore the solution is x = -4 and y = 3.

User Tatarize
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories