25.5k views
0 votes
What is the area of ΔABC given a = 12 inches, b = 24 inches, and m∠C = 26°? 63.125 in.2 93.156 in.2 109.808 in.2 129.426 in.2

1 Answer

1 vote

Step-by-step explanation

We can apply the Cosine Theorem in order to get the value of the Area as shown as follows:


c^2=a^2+b^2-2ab\cos C

Substituting terms:


c^2=12^2+24^2-2\cdot12\cdot24\cdot\cos 26

Computing the powers:


c^2=144+576-576\cdot\cos 26

Computing the argument and adding numbers:


c^2=720-517.705

Subtracting numbers:


c^2=202.295

Applying the square root to both sides:


c=\sqrt[]{202.295}=14.22

Now, the area of the triangle is given by the Heron's Formula:


\text{Semiparameter}=s=(a+b+c)/(2)=(12+24+14.223)/(2)=25.112
\text{Area of triangle=}\sqrt[]{s(s-a)(s-b)(s-c)}

Substituting terms:


\text{Area of triangle=}\sqrt[]{25.112(25.112-12)(25.112-24)(25.112-14.223)}
\text{Area of triangle=}\sqrt[]{25.112(25.112-12)(25.112-24)(25.112-14.223)}

Multiplying and computing terms:


\text{Area of triangle=}63.125in^2

User Carlos Mendieta
by
4.1k points