SOLUTION
For the four points to form a rectangle, the length of the diagonals will be equal.
This means that we have to find the distance between the point BD and AC. If
BD = AC, then the four points would form a rectangle.
![\begin{gathered} Dis\tan ce\text{ betw}ee\text{n points B and D, that is BD} \\ \text{Distance betw}ee\text{n two points = }\sqrt[]{(x2-x1)^2+(y2-y1)^2} \\ BD=\text{ }\sqrt[]{(6-(-4)^2+(5-0)^2} \\ BD=\sqrt[]{10^2+5^2} \\ BD=\sqrt[]{125} \\ BD=\text{ 5}\sqrt[]{5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pytx8qcnm1k1prafug00d3aiz9x2b6giqf.png)
Now let's find AC
![\begin{gathered} AC=\text{ }\sqrt[]{(2-0)^2+(8-(-3)^2} \\ AC=\sqrt[]{2^2+11^2} \\ AC=\sqrt[]{4+121} \\ AC=\sqrt[]{125} \\ AC=5\sqrt[]{5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hfrdt5rpxli1ks4z96b7517nr0gidp9x0j.png)
So, since BD = AC, the four points A, B, C and D would form a rectangle.