Given that
The function is
![f(x)=2-7x^2,\text{ -4}\leq x\leq1](https://img.qammunity.org/2023/formulas/mathematics/college/1xd2hicarn1m1fsfcnz7p7wbj2ba8in2g9.png)
Explanation -
We have to find the maximum and minimum values of the function at the corresponding value of x.
Then,
![\begin{gathered} Values\text{ of x are -4, -3, -2, -1, 0, and 1} \\ f(1)=2-7*1^2=2-7=-5 \\ f(0)=2-0=2 \\ f(-1)=2-7*(-1)^2=2-7=-5 \\ f(-2)=2-7*(-2)^2=2-7*4=2-28=-26 \\ f(-3)=2-7*(-3)^2=2-7*9=2-63=-61 \\ f(-4)=2-7*(-4)^2=2-7*16=2-112=-110 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9v0uwr3m3a6clue8es2jg14tdagtc9qe5c.png)
Hence, the maximum value of f(x) is 2 at x = 0
and minimum value of f(x) is -110 at x = -4
Final answer -
The final answer is the maximum value of f(x) is 2 at x = 0and minimum value of f(x) is -110 at x = -4