109k views
5 votes
F(x) = √32xg(x) = √2xFind (f .g)(x). Assume x ≥ 0.

1 Answer

2 votes

Given the functions:

f(x) = √32x

g(x) = √2x

(f .g)(x) means f(x) * g(x)

We get,


(f\text{ }\cdot\text{ g)(x) = f}(x)\text{ }\cdot\text{ g(x)}
\text{ f}(x)\text{ }\cdot\text{ g(x) = }\sqrt[]{32x}\text{ }\cdot\text{ }\sqrt[]{2x}
\text{ }\sqrt[]{32x}\text{ }\cdot\text{ }\sqrt[]{2x}\text{ = }\sqrt[]{(32)(2)(x)(x)}
\text{ = }\sqrt[]{64x^2}
\text{ = }8x

Therefore, the answer is 8x.

User Cettt
by
3.5k points