Given:
The system of equations are
![\begin{gathered} 2x-3y=-10 \\ 3x-6y=-8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/31jcwlya6ubsmerml4eezrh46np4oq4xjc.png)
Required:
To solve the given system of equations using an inverse matrix.
Step-by-step explanation:
Write the system in terms of a coefficient matrix, a variable matrix, and a constant matrix.
![\begin{gathered} A=\begin{bmatrix}{2} & {-3} \\ {3} & {-6}\end{bmatrix} \\ X=\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix} \\ B=\begin{bmatrix}{-10} & {} \\ {-8} & {}\end{bmatrix} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l8n1difoipskl587636lhwavfznn1etfwr.png)
Then
![\begin{bmatrix}{2} & {-3} \\ {3} & {-6}\end{bmatrix}\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{-10} & {} \\ {-8} & {}\end{bmatrix}----(1)](https://img.qammunity.org/2023/formulas/mathematics/college/kb018xixgvl9yth4gmjp9b14i0z3xybmzt.png)
First, we need to calculate inverse of A. Using the formula to calculate the inverse of a 2 by 2 matrix, we have:
![\begin{gathered} A^(-1)=(1)/(|A|)\begin{bmatrix}{-6} & {3} \\ {-3} & {2}\end{bmatrix} \\ \\ =(1)/(-12-(-9))\begin{bmatrix}{-6} & {3} \\ {-3} & {2}\end{bmatrix} \\ \\ =(1)/(-3)\begin{bmatrix}{-6} & {3} \\ {-3} & {2}\end{bmatrix} \\ \\ =\begin{bmatrix}{2} & {-1} \\ {1} & {-(2)/(3)}\end{bmatrix} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/godlh1nh71cljdmbj34ik3kqefgtugiri9.png)
Now we are ready to solve. Multiply both sides of the equation by inverse of A,
![\begin{bmatrix}{2} & {-1} \\ {1} & {-(2)/(3)}\end{bmatrix}\begin{bmatrix}{2} & {-3} \\ {3} & {-6}\end{bmatrix}\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{2} & {-1} \\ {1} & {-(2)/(3)}\end{bmatrix}\begin{bmatrix}{-10} & {} \\ {-8} & {}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/ta22d54sl0jut70d8qp1xpt9n7fz9br8pe.png)
![\begin{bmatrix}{4-3} & {-6+6} \\ {2-2} & {-3+4}\end{bmatrix}\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{-20+8} & {} \\ {-10+(16)/(3)} & {}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/dqfu9aisqihm5sywoon02lfc31mmbz9y6d.png)
![\begin{gathered} \begin{bmatrix}{1} & {0} \\ {0} & {1}\end{bmatrix}\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{-12} & {} \\ {-(14)/(3)} & {}\end{bmatrix} \\ \\ \begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{-12} & {} \\ {-(14)/(3)} & {}\end{bmatrix} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kavjjddik1cdvp5doz9y0usfit1srrlrgf.png)
Final Answer:
The solution is
![\begin{gathered} x=-12 \\ \\ y=-(14)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hurdo2cny1pi9zutq2dek06wilv9delquv.png)