Given,
The current carried by the cable, I=300 A
The power loss per meter, p=2 W
The resistivity of the copper, ρ=1.7×10⁻⁸ Ωm
The power loss of a conductor is given by,
![\begin{gathered} P=I^2R \\ =(I^2\rho l)/(A) \\ =(I^2\rho l)/(\pi r^2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/p9fg8mzms70251jh0kixjiel119ofh08a8.png)
Where;
• R is the resistance of the wire.
,
• l is the total length of the wire.
,
• A is the cross-sectional area of the cable.
,
• r is the radius of the cable.
The power loss per meter is given by,
![p=(P)/(l)=(I^2\rho)/(\pi r^2)](https://img.qammunity.org/2023/formulas/physics/college/dzhzrzhbday4oggi69k0arlzspkarq83qy.png)
On rearranging the above equation,
![r=\sqrt[]{(I^2\rho)/(\pi p)}](https://img.qammunity.org/2023/formulas/physics/college/jdtgmwjfspypr97a94ecim1ys4hc4w6bkf.png)
On substituting the known values,
![\begin{gathered} r=\sqrt[]{(300^2*1.7*10^(-8))/(\pi*2)} \\ =0.016\text{ m} \\ =1.6\text{ cm} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/nov2hu9pz5r7aeff0qz5fz9aq0v3u9oua8.png)
Thus the radius of the cable is 1.6 cm