The Solution:
Given:
The perimeter of a rectangle is 84.
We are asked to find the dimensions ( that is, length and width) of the rectangle.
Let the length of the rectangle be L and W for the width.
So,
![L=2(1)/(2)of\text{ W}=(5)/(2)W](https://img.qammunity.org/2023/formulas/mathematics/college/87ky011m32drt0m1rfln9qg4p5rgxifldq.png)
By formula, the perimeter of a rectangle is:
![\begin{gathered} P=2(L+W) \\ \\ In\text{ this case,} \\ P=perimeter=84 \\ W=width=? \\ L=length=(5)/(2)W \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mq9hgx1lvz63640w6s7xo3jmb7wxxzcp4q.png)
Substitute these values in the formula, we get:
![84=2((5)/(2)W+W)](https://img.qammunity.org/2023/formulas/mathematics/college/cy4m801c8wgpjqk8qnkhfbwrqbp7x0hx39.png)
Dividing both sides by 2, we get:
![\begin{gathered} 42=(5)/(2)W+W \\ \\ 42=(5W+2W)/(2) \\ \\ 42=(7W)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mofdj368o5ueac7x5sdoxs85yn0snu33vh.png)
Cross multiplying, we get:
![\begin{gathered} 7W=2*42 \\ 7W=84 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h43my1kjuo3d4tfsc2qzwbhr4wqp80pr2c.png)
Dividing both sides by 7, we get:
![W=(84)/(7)=12](https://img.qammunity.org/2023/formulas/mathematics/college/2h8shynnz27cnpadc0zforgk8cmn3prsqf.png)
To find the length L, we shall put 12 for W.
![L=(5)/(2)W=(5)/(2)*12=5*6=30](https://img.qammunity.org/2023/formulas/mathematics/college/ajbbvlfrdl354krkfhgrxyy8k3zv0w886r.png)
Therefore, the dimensions of the rectangle is 30 by 12.
Length = 30 units
Width = 12 units