Solution:
Given:
A parallelogram with;
![\begin{gathered} \angle M=8x+1 \\ \angle K=16x-13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/idq9xoif8en0xmkuntewaw6gzzkasiuxzu.png)
In a parallelogram, the angles on the same side of the transversal are supplementary, which means they add up to 180 degrees.
Hence,
![\angle M+\angle K=180^0](https://img.qammunity.org/2023/formulas/mathematics/college/k3kfgdbixukjmwk32hxri5jlpaekacii3s.png)
Thus,
![\begin{gathered} 8x+1+16x-13=180^0 \\ \text{Collecting the like terms,} \\ 8x+16x+1-13=180^0 \\ 24x-12=180 \\ 24x=180+12 \\ 24x=192 \\ \text{Dividing both sides by 24 to get the value of x,} \\ x=(192)/(24) \\ x=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5q8pig7l3l71w61so0sgkrbeuk72rmniiz.png)
To get the measure of angle K, we substitute the value of x gotten.
![\begin{gathered} \angle K=16x-13 \\ \text{Hence,} \\ m\angle K=16x-13 \\ m\angle K=16(8)-13 \\ m\angle K=128-13 \\ m\angle K=115^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/44f5can22721pm5y867y2wrrwwfg7bdeow.png)
Therefore, the measure of angle K in the parallelogram is 115 degrees.