Answer
The answer is 7,911,000,000
EXPLANATION
Problem Statement
The question tells us that the world's population is modeled by the formula:
![\begin{gathered} P_N=P_0e^(iN) \\ \text{where, } \\ i=\text{growth rate of the population} \\ N=\text{Number of years} \\ P_0=\text{Initial population at 1994} \\ P_N=\text{Population at year of interest} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jwu67namjcyu5id4ymx9qg305q2ez4uug1.png)
Solution
To solve this question, we simply need to plug in all the values given to us. That is,
![\begin{gathered} \text{Growth rate = 1.3 \%} \\ \text{ Initial population (}P_0)=5,642,000,000 \\ \text{Number of years (N) = 2020 - 1994 = 26} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a9o203q4o1w5tisc17fei7knp5slakb4fz.png)
Thus, we can find the estimated world population in year 2020 as follows:
![\begin{gathered} P_N=P_0e^(iN) \\ P_N=5,642*10^6* e^{(1.3)/(100)*26} \\ P_n=7,910.88*10^6\approx7,911,000,000\text{ (To the nearest million)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b59qawejsqmgn6l90psmpzp62iqcgd56g7.png)
Final Answer
The answer is 7,911,000,000