Given data:
Initial velocity of the ball;
![u=40.0\text{ m/s}](https://img.qammunity.org/2023/formulas/physics/college/aymz2f2y8pt9h4381aqoq9srr0jl4wz000.png)
Launch angle;
![\theta=50.0\degree](https://img.qammunity.org/2023/formulas/physics/college/b7nrtckm0tcm4qxkg03tb3rwnzese0adij.png)
Distance between the launch site and the hole;
![D=170.0\text{ m}](https://img.qammunity.org/2023/formulas/physics/college/8hce5e7y5ar4jn5ardytqx88qu62lqfhl7.png)
The range of the projectile is given as,
![R=(u^2\sin 2\theta)/(g)](https://img.qammunity.org/2023/formulas/physics/college/haefgmlfk61n435l04rprzg4yfgxnopo96.png)
Here, g is the acceleration due to gravity.
Substituting all known values,
![\begin{gathered} R=\frac{(40\text{ m/s})^2*\sin (2*50\degree)}{9.8\text{ m/s}^2} \\ \approx160.78\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/4cdbsq8vjpd5ilsp1oowckhfskhxswfbeg.png)
The distance between the hole and landing site is given as,
![d=D-R](https://img.qammunity.org/2023/formulas/physics/college/25dryq7op92fo1p0e9o58i1eakv0wyiaxo.png)
Substituting all known values,
![\begin{gathered} d=(170\text{ m})-(160.78\text{ m}) \\ =9.22\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ae9h2fejwm1y8t943mlf7a7zf0lbnpl8gm.png)
Therefore, the ball will land 9.22 m away from the hole.