Let's find the values of x and y.
Take the following steps:
Step 1:
Apply the equation below to find x
![x^2=2(2+10)](https://img.qammunity.org/2023/formulas/mathematics/college/istsdmcnx1xz1tmamc15sxulfeho7t56mk.png)
Let's solve for x.
Apply distributive property:
![\begin{gathered} x^2=2(2)+2(10) \\ \\ x^2=4+20 \\ \\ x^2=24 \\ \\ \text{Take the square root of both sides:} \\ \sqrt[]{x^2}=\sqrt[]{24} \\ \\ x=4.9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l8duxt1bdaxcdlmttlh406v35kj8gam1y5.png)
Step 2:
Apply the equation below to find the value of y
![x^2=4(4+y)](https://img.qammunity.org/2023/formulas/mathematics/college/ac177dotibrbkdu9luehs5lvjodb5493y5.png)
Substitute 24 for x² and find the value y:
![\begin{gathered} 24=4(4+y)^{} \\ \\ 24=4(4)+4(y) \\ \\ 24=16+4y \\ \\ \text{Subtract 16 from both sides:} \\ 24-16=16-16+4y \\ \\ 8=4y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2tg2ngetlnq49ngqg9jd9a1n9nimu8qtdc.png)
Divide both sides by 4:
![\begin{gathered} (8)/(4)=(4y)/(4) \\ \\ 2=y \\ \\ y=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3jq0017p6106wwefqx3pyjpmx0efgj9rmf.png)
Therefore, we have:
x = 4.9
y = 2
ANSWER:
x = 4.9