INFORMATION:
We have the next figure
And we must find its surface area
STEP BY STEP EXPLANATION:
The surface area of a cone is equal to the curved surface area plus the area of the base:
![A=\pi r^2+\pi Lr](https://img.qammunity.org/2023/formulas/mathematics/college/a051vpqwchq8b3ekhcxmemtdpsqp8of7mj.png)
Where, r denotes the radius of the base of the cone, and L denotes the slant height of the cone.
Now, we must calculate L using the right triangle formed
We can use the Pythagorean theorem,
![\begin{gathered} L^2=9^2+12^2 \\ L^2=81+144 \\ L^=√(225) \\ L=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a8rawru2ykl3shy173h4b2ztp5608ueriw.png)
So, having r = 9 in and L = 15 in, we can replace the values in the formula
![\begin{gathered} A=\pi\cdot9^2+\pi\cdot15\cdot9 \\ A=81\pi+135\pi \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bvmfq2767q3atp1ls7i4d8dcssf3hx6um9.png)
Then, replacing π = 3.14
![\begin{gathered} A=81(3.14)+135(3.14) \\ A=678.2\text{ }in^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vubi22lkxfkw7v5fnsj7k2xbrbkjv5kar3.png)
Finally, the surface area of the cone is 678.2 in^2
ANSWER:
678.2 in^2