Let's draw a diagram to represent the given problem.
If R is midpoint then PR and RQ are equal by definition of midpoint. So, we can express the following equation.
![\begin{gathered} PR=RQ \\ 3x+6=5x-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/552keimbui560nh419uk8b76g4dbt3drz1.png)
Then, we solve for x. First, we subtract 5x on each side.
![\begin{gathered} 3x-5x+6=5x-5x-2 \\ -2x+6=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ijfu9mcai2odwk30cb8md0fhw9ktxmns8m.png)
Now, we subtract 6 on each side.
![\begin{gathered} -2x+6-6=-2-6 \\ -2x=-8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wk9yx4rq1fy2k9z07pyzd8ii9ovwuqz6qx.png)
At last, we divide the equation by -2.
![\begin{gathered} (-2x)/(-2)=(-8)/(-2) \\ x=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lbl60v184jtlfshinqod7nsf5szzu5awa3.png)
The solution for x is 4.
We use this value to find PR and RQ.
![PR=3x+6=3(4)+6=12+6=18=RQ](https://img.qammunity.org/2023/formulas/mathematics/college/qz1de931xmj12f2c4gff8sxfahz9ix32ye.png)
Then, we find PQ.
![PQ=18+18=36](https://img.qammunity.org/2023/formulas/mathematics/college/maw24apgbqbhn7k8iphmwzr2pvt4mk2new.png)
Therefore, PR and RQ are equal to 18 units, and PQ is equal to 36 units.