52.1k views
4 votes
Suppose sin(theta) = -3/7 and theta is in quadrant 4. Use a trig identity to find the value of cos(theta).

User MacOS
by
6.4k points

1 Answer

3 votes

Since theta is in quadrant 4, the cosine of theta is positive.

Now, to solve this problem, we can use the following trigonometric identity:


\begin{gathered} \cos ^(2)\theta+\sin ^2\theta=1 \\ \\ \cos ^2\theta=1-\sin ^(2)\theta \\ \\ \cos \theta=\sqrt[]{1-\sin ^(2)\theta} \end{gathered}

Then, using


\sin \theta=-(3)/(7)

we obtain:


\begin{gathered} \cos \theta=\sqrt[]{1-\mleft(-(3)/(7)\mright)^2} \\ \\ \cos \theta=\sqrt[]{1-(9)/(49)} \\ \\ \cos \theta=\sqrt[]{(49)/(49)-(9)/(49)} \\ \\ \cos \theta=\sqrt[]{(40)/(49)} \\ \\ \cos \theta=\frac{2\sqrt[]{10}}{7} \end{gathered}

Therefore, the answer is


\cos \theta=\frac{2\sqrt[]{10}}{7}

User Mmoossen
by
5.6k points