Given:
![f(x)=x^2+2x-6](https://img.qammunity.org/2023/formulas/mathematics/college/ze7ewjrktxwezmcb5c3fb1zfldbcxhintk.png)
We get two points from the given table.
(-6,14) and (-3,8).
Required:
We need to find the range of (f+g)(x).
Step-by-step explanation:
Consider the equation of the linear function.
![g(x)=mx+b](https://img.qammunity.org/2023/formulas/mathematics/college/rnwdz14qrtojz2tdgfj63pf8dtxbjj5hjd.png)
where m is the slope.
Consider the formula to find the slope.
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
![Substitute\text{ }y_2=8,y_1=14,x_2=-3,\text{ and }x_1=-6\text{ in the formula to find the slope m.}](https://img.qammunity.org/2023/formulas/mathematics/college/14a3r12bemgn1rg0dt4652upzmliht48q2.png)
![m=(8-14)/(-3-(-6))](https://img.qammunity.org/2023/formulas/mathematics/college/urbmsgtf22vx143a92b0u75apn457kinpx.png)
![m=(-6)/(3)=-2](https://img.qammunity.org/2023/formulas/mathematics/college/vrdzzojg6r05ozqt5ey9pf8rktrx95j9u2.png)
![Substitute\text{ m=-3 in the equation }g(x)=mx+b.](https://img.qammunity.org/2023/formulas/mathematics/college/bbdy9zswof057izge57ew5nms1p0cj5b6y.png)
![g(x)=-2x+b](https://img.qammunity.org/2023/formulas/mathematics/college/wt6lun9rtggewli5gfiu0yq3l9f5emfjzp.png)
![Substitute\text{ x=-6 and g\lparen-6\rparen=14 in the equation to find the value of b.}](https://img.qammunity.org/2023/formulas/mathematics/college/22k1ee74r9m9llrpethymwemcky6np04ix.png)
![14=-2(-6)+b](https://img.qammunity.org/2023/formulas/mathematics/college/cq784ohxiyx2sfqvgfyzmkurodg8ubson0.png)
![14=12+b](https://img.qammunity.org/2023/formulas/mathematics/college/2o80cuhivyloikkxq9jk3y5xfu9rzk7p5s.png)
Subtract 12 from both sides of the equation.
![14-12=12-12+b](https://img.qammunity.org/2023/formulas/mathematics/college/1d0m8xsykieb9nhafoapho5jbpyoovw81y.png)
![2=b](https://img.qammunity.org/2023/formulas/mathematics/high-school/p2jq02s2uzrlbzq443nyw9h224u35sqkxa.png)
![Substitute\text{ b =2 in the equation }g(x)=-2x+b.](https://img.qammunity.org/2023/formulas/mathematics/college/lcv4u48twbqvc0ity4a52zexkca7jp2kqc.png)
![g(x)=-2x+2](https://img.qammunity.org/2023/formulas/mathematics/college/uuzpdkj9ugb2ixnh37dpcf8umuc45uh7cx.png)
![We\text{ know that }(f+g)(x)=f(x)+g(x).](https://img.qammunity.org/2023/formulas/mathematics/college/xp6b3cav2ek5gg6oum4qefz1wd27pxrc7y.png)
![Substitute\text{ }f(x)=x^2+2x-6\text{ and }g(x)=-2x+2\text{ in the equation.}](https://img.qammunity.org/2023/formulas/mathematics/college/2nmf6k6kanrw0xatb4ohi72sd6wqi6f9gy.png)
![(f+g)(x)=(x^2+2x-6)+(-2x+2)](https://img.qammunity.org/2023/formulas/mathematics/college/jw2laanzmv40x0ekn3vej1vq535jw0cgax.png)
![=x^2+2x-6-2x+2](https://img.qammunity.org/2023/formulas/mathematics/college/6lupv2omc7eyl14y7d37n76izr5qm6fe6q.png)
![=x^2+2x-2x-6+2](https://img.qammunity.org/2023/formulas/mathematics/college/8gcyamq6nsu5xj6a5w35cwn33btzqu7smk.png)
![=x^2-4](https://img.qammunity.org/2023/formulas/mathematics/college/uaek3t6owg83yy79pgsalx3lcl3jx58meu.png)
![\text{We get }(f+g)(x)=x^2-4.](https://img.qammunity.org/2023/formulas/mathematics/college/lc2une9e5b0tjngg4ucrv5bjgfnmyk7u5z.png)
The graph of the function (f+g)(x).
We know that the range of a graph consists of all the output values shown on the y-axis.
The minimum value of the range is -4.
The graph moves upward to infinity.
The maximum value of the range is infinity.
![range=(-4,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/h2cr542xcsg5hqm3f5men7283vtusrwt67.png)
Final answer:
![range=(-4,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/h2cr542xcsg5hqm3f5men7283vtusrwt67.png)