Given
![\begin{gathered} f(x)=(x+10)^{(1)/(2)} \\ \\ g(x)=(x+10)^{(1)/(3)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/armqmiuy20u73sfamt47b10nbzq4zuoqvj.png)
Find
Domain of the function
Step-by-step explanation
Domain of the function is the set of all possible values of x which will given the output value y.
![\begin{gathered} f(x)=√((x+10)) \\ x+10=0 \\ x=-10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/o8owpc6yay92243u9f6bc9a3hbttezfsav.png)
so , domain of the function , f(x) =
![[-10,\infty)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bei1tbckl5ucuqwpfkujs92lsur6bjuwvn.png)
and
as we know that the domain of the function is all real numbers except where the function is undefined.
in this case , there is no real number which makes the function undefined.
so , domain of g(x) is all values of x
so ,
![g(x)=(-\infty,\infty)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6kivufiwn3etbzg7dc64vwzc27n1wl4efg.png)
Final Answer
Therefore , the domain of f(x) anf g(x) are
![f(x)=[-10,\infty)](https://img.qammunity.org/2023/formulas/mathematics/high-school/xs9h0pjmypobylabuzvse4oc5nxa69r1w2.png)
![g(x)=(-\infty,\infty)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6kivufiwn3etbzg7dc64vwzc27n1wl4efg.png)