Given Data:
The length of the diagonal of the squre is:d=10 units.
Let 'a' be the length of a side of the given square.
The expression to caclculate the length of the side 'a' is,
![\begin{gathered} d=\sqrt[]{a^2+a^2} \\ d=\sqrt[]{2a^2} \\ a=\sqrt[]{(d^2)/(2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mpobzat1vvyqquj6d36s161ukxz3z0px3p.png)
Substitute values in the above expression.
![\begin{gathered} a=\sqrt[]{(10^2)/(2)} \\ a=\sqrt[]{(100)/(2)} \\ a=\sqrt[]{50} \\ a=5\sqrt[]{2} \\ a=7.071\text{ units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rtdtg1v2kljebk2fz16e7uq54j5k4zjnxa.png)
Thus, the length of the side a is 7.071 units.