The volume of a Sphere was determined using the following formula:
![V=(4)/(3)\pi r^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/zraet4fw93vx9gjz3iextthjo546ibcpwc.png)
Given that you know the volume of the sphere, you can determine its radius.
First, let's write the formula for r:
- multiply both sides of the equal sign by the reciprocal fraction of 4/3π to leave the r term alone on the left side of the formula:
![V\cdot(3)/(4)\pi=r^3](https://img.qammunity.org/2023/formulas/mathematics/college/azcqai5gz2me3pg5wbjs208baafsfo7pmz.png)
-apply the cubic root to both sides of the equal sign
![\begin{gathered} \sqrt[3]{V\cdot(3)/(4)\pi}=\sqrt[3]{r^3} \\ \sqrt[3]{V\cdot(3)/(4)\pi}=r \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ph9i616zaxr41134m0dilweiwmqk8kxnqb.png)
Replace the expression obtained with the given volume of the sphere:
![\begin{gathered} r=\sqrt[3]{36000\pi\cdot(3)/(4)\pi} \\ r=\sqrt[3]{27000} \\ r=30 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6vb2pduvkupqj2gdc4j8aqnnwcdiniapa1.png)
The radius of the sphere is 30mm long