The profit fuction is given as,
![P(n)=-0.002n+6.5n+1100](https://img.qammunity.org/2023/formulas/mathematics/college/i17g7axcrjg6mib3ic9rrn2sa1iswjb3i1.png)
(a):
If the value of n=1000 the profit can be determined as,
![\begin{gathered} P(1000)=-0.002*1000+6.5*1000+1100 \\ =7598 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ri9cy392tfhrbd5j56c47iv44sro9qv521.png)
Thus, the required profit is 7598.
(b):
If the value of profit is $6000 then the minimum number of ornamets can be determined as,
![\begin{gathered} 6000=-0.002n+6.5n+1100 \\ 4900=6.498n \\ n=754.078\approx755 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z4tr3c8lfqwtel0nd4d9ah15hdusoadb56.png)
Thus, the required number of minimum ornamets is 755.