Given
![\tan^2((x)/(2))+2\tan((x)/(2))-5=3\tan((x)/(2))](https://img.qammunity.org/2023/formulas/mathematics/college/l5mtgwff8j64s12m0t6jm278kdzk8spp53.png)
Find
Value of x that makes the equation true and what step will she take first
Step-by-step explanation
to find the value of x , the first step we use
subtract
![3\tan((x)/(2))](https://img.qammunity.org/2023/formulas/mathematics/college/376yldxycn10v41kdy9hq6qnsijjbcmn1x.png)
from both sides
on subtraction , we obtain
![\tan^2((x)/(2))-\tan((x)/(2))-5=0](https://img.qammunity.org/2023/formulas/mathematics/college/an9r8m6nol31dqgzn1i0zdrsnpghurnp95.png)
now ,
![\begin{gathered} \tan((x)/(2))=(-(-1)\pm√((-1)^2-4*1*(-5)))/(2) \\ \\ \tan((x)/(2))=(1\pm√(21))/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vlv5ivitfxpkac0yxfj96y12o9aeyqwei5.png)
Final Answer
The correct option is C.