75.9k views
1 vote
For each equation, choose the statement that describes its solution.

If applicable, give the solution.


3(y+2)+y=4(y-1)+9


5(u+1)-u=4(u-1)+9

1 Answer

5 votes

ANSWER

The first equation has no solution

The second equation has infinitely many solutions

Explanation:

From the question provided, you are given the following equations

3(y + 2) + y = 4(y - 1) + 9

5(u + 1) - u = 4(u - 1) + 9

To find the values of y and u, we need to solve the equations independently


\begin{gathered} 3(y\text{ + 2) + y = 4(y - 1) + 9} \\ \text{open the parentheses} \\ 3\cdot\text{ y + 3 }\cdot\text{ 2 + y = 4}\cdot y\text{ - 4 }\cdot1\text{ + 9} \\ 3y\text{ + 6 + y = 4y - 4 + 9} \\ \text{Collect the like terms} \\ 3y\text{ + y + 6 = 4y + 5} \\ 4y\text{ + 6 = 4y + 5} \\ 6\text{ = 5} \\ \text{Hence, the equation has no solution} \end{gathered}
\begin{gathered} 5(u\text{ + 1) - u = 4(u - 1) + 9} \\ \text{Open the parentheses} \\ 5\cdot\text{ u + 5}\cdot1\text{ - u = 4}\cdot u\text{ - 4}\cdot1\text{ + 9} \\ 5u\text{ + 5 - u = 4u - 4 + 9} \\ \text{Collect the like terms} \\ 5u\text{ - u + 5 = 4u + 5} \\ 4u\text{ + 5 = 4u + 5} \\ 5=\text{ 5} \\ \text{Hence, this equation has infinite }solutions \end{gathered}

User Mohan Gulati
by
3.2k points