Let's first draw the scenario to better understand the question.
Equation of segment A = 2x + 1
Equation of segment B = 3x + 4
It also says that the second segment is two times the length of the first segment.
We will use that relationship to find x.
![\text{ Length of segment B = 2 x Length of segment A}](https://img.qammunity.org/2023/formulas/mathematics/college/8g8sg4nqczyfm96bw5d03e6tmntkgq6h4b.png)
![\text{ 3x + 4 = 2\lparen2x + 1\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/zdqpk04vfz0bkhvz7djgg5309ny13djcrk.png)
![\text{ 3x + 4 = 4x + 2}](https://img.qammunity.org/2023/formulas/mathematics/college/7fq633x7n1gyro2hcid893x9yphft9kjju.png)
![\text{ 3x - 4x = 2 - 4}](https://img.qammunity.org/2023/formulas/mathematics/college/yodk812ldrvcnemkkx5axrv0n4x68ctucq.png)
![\text{ -x = -2}](https://img.qammunity.org/2023/formulas/mathematics/college/ac5zi8p8aoavxt5qw6c64wkyjqyxjiavee.png)
![\text{ }(-x)/(-1)\text{ = }(-2)/(-1)](https://img.qammunity.org/2023/formulas/mathematics/college/ix8olnsvtj0rbqxxdpxn5ny0q5s8k8fqd3.png)
![\text{ x = 2}](https://img.qammunity.org/2023/formulas/mathematics/college/oqyybykzebtq2h3aig7olmirjitmnx4fog.png)
Therefore, x = 2