You have the following points:
S(7,-5) K(9,-4) I(8,-7) R(9,-9) T(7,-8)
T(x,y) => (x - 6,y)
S => S'(7-6,-5) = S'(1,-5)
K => K'(9-6,-4) = K'(3,-4)
I => I'(8-6,-7) = I'(2,-7)
R => R'(9-6,-9) = R'(3,-9)
T => T'(7-6,-8) = T'(1,-8)
T(x,y) => (x,-y) reflection around x-axis
S' => S''(1,5)
K' => k''(3,4)
I' => I''(2,7)
R' => R''(3,9)
T' => T''(1,8)
T(x,y) => (x+5,y+4)
S'' => S'''(1+5,5+4) = S'''(6,9)
K'' => K'''(3+5,4+4) = K'''(8,8)
I'' => I'''(2+5,7+4) = I'''(7,11)
R'' => R'''(3+5,9+4) = R'''(8,13)
T'' => T'''(1+5,8+4) = T'''(6,12)
T(x,y) => (x -12,y+9)
S''' => S''''(6-12,9+9) = S''''(-6,18)
K''' => K''''(8-12,8+9) = K''''(-4,17)
I''' => I''''(7-12,11+9) = I''''(-5,20)
R''' => R''''(8-12,13+9) = R''''(-4,22)
T''' => T''''(6-12,12+9) = T''''(-6,21)
The previous result are the final points after all transformations.
A graph of the result is as follow:
the points S,K,I,R