11.8k views
0 votes
PLAC S(7,-5) K(9, -4) I(8, -7) R(9, -9) T(7,-8) and perform: (1) T(x, y) -> (X-6, y) and label S'KTR'T' (2) Reflect SKIRT over the x-axis and label S"K"I"R"T". Write the rule using the notation. (3) Shift SKIRT 4 units up and 5 units right and label S""K"|""R""T". Write the rule. (4) Write the new coordinates of KV after shifting K"9 units up & 12 left.

1 Answer

7 votes

You have the following points:

S(7,-5) K(9,-4) I(8,-7) R(9,-9) T(7,-8)

T(x,y) => (x - 6,y)

S => S'(7-6,-5) = S'(1,-5)

K => K'(9-6,-4) = K'(3,-4)

I => I'(8-6,-7) = I'(2,-7)

R => R'(9-6,-9) = R'(3,-9)

T => T'(7-6,-8) = T'(1,-8)

T(x,y) => (x,-y) reflection around x-axis

S' => S''(1,5)

K' => k''(3,4)

I' => I''(2,7)

R' => R''(3,9)

T' => T''(1,8)

T(x,y) => (x+5,y+4)

S'' => S'''(1+5,5+4) = S'''(6,9)

K'' => K'''(3+5,4+4) = K'''(8,8)

I'' => I'''(2+5,7+4) = I'''(7,11)

R'' => R'''(3+5,9+4) = R'''(8,13)

T'' => T'''(1+5,8+4) = T'''(6,12)

T(x,y) => (x -12,y+9)

S''' => S''''(6-12,9+9) = S''''(-6,18)

K''' => K''''(8-12,8+9) = K''''(-4,17)

I''' => I''''(7-12,11+9) = I''''(-5,20)

R''' => R''''(8-12,13+9) = R''''(-4,22)

T''' => T''''(6-12,12+9) = T''''(-6,21)

The previous result are the final points after all transformations.

A graph of the result is as follow:

the points S,K,I,R

PLAC S(7,-5) K(9, -4) I(8, -7) R(9, -9) T(7,-8) and perform: (1) T(x, y) -> (X-example-1
User David Pratte
by
4.6k points