1. Choose a point on the parabola
![(x,y)](https://img.qammunity.org/2023/formulas/mathematics/high-school/fc1644jwszkab41ywkr1o5torpamtdlony.png)
2. Find the distance from the focus to the point on the parabola.
![\sqrt[]{(x+1)^2+(y-2)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/xs9a089x3ida6elpi9zbgwd7b4v5yzbvpc.png)
3. Find the distance from the point on the parabola to the directrix.
![\sqrt[]{(x-5)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/70lnckxqa9f2vhjity5n5ojciovgcqr5uz.png)
4. Set the distance from the focus to the point equal to the distance from directrix to the point.
![\sqrt[]{(x+1)^2+(y-2)^2}=\sqrt[]{(x-5)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/1qap6ej8auolcthaamrxv8epzttozmuwb6.png)
5. Square both sides and simplify
![\begin{gathered} (x+1)^2+(y-2)^2=(x-5)^2 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wk324zt8jph54occee3elkr6ce8q8uws6f.png)
6. Write the equation of the parabola.
![x=-(y^2)/(12)+(y)/(3)+(5)/(3)_{}](https://img.qammunity.org/2023/formulas/mathematics/college/e5o60bi1hs2u9l8nbmzjr6z65t7yrrum03.png)